Vehicle Engine Classification Using of Laser Vibrometry Feature Extraction
نویسنده
چکیده
.......................................................................................................................................... 7 1 Introduction ............................................................................................................................... 8 2 – Laser Doppler Vibrometer Principle ....................................................................................... 11 3 – Data Collection Process .......................................................................................................... 13 4 – Previous Works ....................................................................................................................... 16 5 – Methodologies and Results for Tone-Pitch Index .................................................................. 19 5.1 – Tone-pitch vibration indexing scheme............................................................................. 19 5.2 – Supervised learning methods to classify vehicle engines using the tone-pitch index ..... 22 5.3 – Results for tone-pitch index ............................................................................................. 24 5.3.1 – Supervised learning ................................................................................................... 24 5.3.2 – Deep learning ............................................................................................................ 27 6 – Improving Tone-Pitch Index ................................................................................................... 28 6.1 – Number of hidden nodes and hidden layers ..................................................................... 28 6.2 – Inside the neural network ................................................................................................. 29 6.3 – Weakness in tone-pitch index .......................................................................................... 31 7 Methodologies and Results for Normalized Tone-Pitch Index ............................................... 33
منابع مشابه
Functional Overview of Hydraulic Vehicle Engine Mount Classification
Car design incorporates many engineering sciences where today, have led to the use of advanced technologies in automobiles to provide more satisfaction and comfort for the passengers, increase the quality of vehicles, efficiency and more pleasure than previous cars. These issues can be categorized into two groups in general. In the first group, the effects and performance of components involved...
متن کاملFeature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...
متن کاملClassification of Uncooperative Vehicles with Sparse Laser Doppler
Recently Laser Doppler Vibrometry (LDV) has been widely employed to achieve long-range sensing for the purpose of Intelligence, Surveillance and Reconnaissance (ISR) in military applications, due to its high spatial and spectral resolutions in vibration measurements that facilitates effective analysis using signal processing and machine learning techniques. Based on the collaboration of The Cit...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016